Lyubeznik Table of Sequentially Cohen-macaulay Rings
نویسندگان
چکیده
We prove that sequentially Cohen-Macaulay rings in positive characteristic, as well as sequentially Cohen-Macaulay Stanley-Reisner rings in any characteristic, have trivial Lyubeznik table. Some other configurations of Lyubeznik tables are also provided depending on the deficiency modules of the ring.
منابع مشابه
A characterization of shellable and sequentially Cohen-Macaulay
We consider a class of hypergraphs called hypercycles and we show that a hypercycle $C_n^{d,alpha}$ is shellable or sequentially the Cohen--Macaulay if and only if $nin{3,5}$. Also, we characterize Cohen--Macaulay hypercycles. These results are hypergraph versions of results proved for cycles in graphs.
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملAmalgamated duplication of some special rings along an ideal
Let be a commutative Noetherian ring and let I be a proper ideal of . D’Anna and Fontana in [6] introduced a new construction of ring, named amalgamated duplication of along I. In this paper by considering the ring homomorphism , it is shown that if , then , also it is proved that if , then there exists such that . Using this result it is shown that if is generically Cohen-Macaulay (resp. gen...
متن کاملComplement of Special Chordal Graphs and Vertex Decomposability
In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.
متن کامل